# OCR A Chemistry A-Level Module 5 - Physical Chemistry \& Transition Elements 

Equilibria<br>Notes and Example Calculations

Answers given at the end of the booklet

## The Equilibrium Constant, Kc

## Le Chatelier Principle

If a closed system under equilibrium is subjected to a change, the system will move to minimise the effect of the change. These changes can be either temperature, pressure or concentration.

The equilibrium constant shows where the equilibrium lies for a general reaction:

$$
a A+b B \leftrightharpoons p P+q Q
$$

The equilibrium constant expression is:

$$
\mathrm{Kc}=\frac{[\mathrm{P}]^{\mathrm{p}}[\mathrm{Q}]^{\mathrm{q}}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
$$

## Example 1:

Write the equilibrium constant expression for this reaction and include the units:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

Step 1: Write an expression for Kc.
[Remember it is always products over reactants.]
$\Rightarrow \mathrm{Kc}=[\mathrm{NH} 3]^{2}$
[N2] [H2] ${ }^{3}$
Step 2: Find the units for Kc.

$$
\frac{\mathrm{Mg} / \mathrm{dm}^{-3} \times \mathrm{Mo} / \mathrm{dm}^{-3}}{\mathrm{M} \rho / \mathrm{dm}^{-3} \times \mathrm{Mo} / \mathrm{dm}^{-3} \times \mathrm{Mol} \mathrm{dm}^{-3} \times \mathrm{Mol} \mathrm{dm}^{-3}}
$$

$\Rightarrow$ Units: $\underline{\mathrm{mol}}^{-2} \underline{\mathrm{dm}}^{\underline{6}}$

## Example 2:

For the equilibrium:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

the equilibrium concentrations of $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ are $1.0,0.205$ and $0.205 \mathrm{~mol} \mathrm{dm}^{-3}$ respectively. Calculate the value of $\mathrm{K}_{\mathrm{c}}$.

Step 1: Write an equilibrium constant expression for this reaction.
$\Rightarrow \mathrm{Kc}=[\mathrm{Cl} 2][\mathrm{PCl} 3]$
$\left[\mathrm{PCl}_{5}\right]$

Step 2: Input the values with the corresponding molecules into the expression.
$\Rightarrow \mathrm{Kc}=(0.205) \times(0.205)$
1
$=\underline{0.042} \mathrm{moldm}^{-3}$

## Worked Exam Style Questions

## Question 1

Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol.

A dynamic equilibrium was set up between carbon monoxide, CO , hydrogen, $\mathrm{H}_{2}$, and methanol, $\mathrm{CH}_{3} \mathrm{OH}$, in a $2.0 \mathrm{dm}^{3}$ sealed vessel.

The equilibrium is shown below.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

The number of moles of each component at equilibrium is shown below

| component | $\mathrm{CO}(\mathrm{g})$ | $\mathrm{H}_{2}(\mathrm{~g})$ | $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ |
| :---: | :---: | :---: | :---: |
| number of moles <br> at equilibrium | $6.20 \times 10^{-3}$ | $4.80 \times 10^{-2}$ | $5.20 \times 10^{-5}$ |

## (i) Write an expression for $K_{\mathrm{c}}$ for this equilibrium system.

(ii) Calculate $K_{\mathrm{c}}$ for this equilibrium. State the units.
$\qquad$

$$
K_{\mathrm{c}}=.
$$ units:

Step 1: Write the Kc expression.
$\Rightarrow \mathrm{Kc}=[\mathrm{CH} 3 \mathrm{OH}]$
$[\mathrm{CO}][\mathrm{H} 2]^{2}$

Step 2: Convert moles to concentration. Use the formula: Concentration = Moles / Volume.
$6.2 \times 10^{-3} / 2=3.1 \times 10^{-3}$
$4.8 \times 10^{-2} / 2=2.4 \times 10^{-2}$
$5.2 \times 10^{-5} / 2=2.6 \times 10^{-5}$

Step 3: Input the values into the expression.
$\mathrm{Kc}=\quad 2.6 \times 10^{-5}$
$\left(2.4 \times 10^{-2}\right)^{2} \times 3.1 \times 10^{-3}$
$=\underline{14.56}$

Step 4: Work out the units

$\Rightarrow \mathrm{mol}^{-2} \mathrm{dm}^{-6}$

## Question 2

Nitrogen gas and hydrogen gas produce ammonia gas as shown below.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta H=-92 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(i) Write the expression for $K_{C}$ for this equilibrium.

At $500^{\circ} \mathrm{C}, K_{c}=8.00 \times 10^{-2} \mathrm{dm}^{6} \mathrm{~mol}^{-2}$.
At equilibrium, the concentration of $\mathrm{N}_{2}$ is $1.20 \mathrm{moldm}^{-3}$ and the concentration of $\mathrm{H}_{2}$ is $2.00 \mathrm{moldm}^{-3}$.

Calculate the equilibrium concentration of ammonia under these conditions.
equilibrium concentration of $\mathrm{NH}_{3}=$ $\qquad$ $\mathrm{moldm}^{-3}$

Step 1: Write the Kc expression.
$\Rightarrow \mathrm{Kc}=[\mathrm{NH} 3]^{2}$
$[\mathrm{N} 2][\mathrm{H} 2]^{3}$
Step 2: Rearrange the expression so that ammonia is the subject.
$\Rightarrow[\mathrm{NH} 3]^{2}=\mathrm{Kc} \times[\mathrm{N} 2] \times[\mathrm{H} 2]^{3}$
Step 3: Input values into the expression.
$\Rightarrow[\mathrm{NH} 3]^{2}=8 \times 10^{-2} \times 1.2 \times 2^{3}$

$$
=0.768
$$

$[\mathrm{NH} 3]=\sqrt{ } 0.78$

$$
=0.88 \mathrm{moldm}^{-3}
$$

## Question 3

The preparation of hydrogen iodide, $\mathrm{HI}(\mathrm{g})$, from hydrogen and iodine gases is a reversible reaction which reaches equilibrium at constant temperature.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

(a) Write the expression for $K_{\mathrm{c}}$ for this equilibrium.
(b) A student mixed together $0.30 \mathrm{~mol}_{\mathrm{H}_{2}(\mathrm{~g}) \text { with } 0.20 \mathrm{~mol}_{2}(\mathrm{~g}) \text { and the mixture was }{ }^{\text {(b) }} \text {. }}$ allowed to reach equilibrium. At equilibrium, $0.14 \mathrm{~mol}_{\mathrm{H}_{2}(\mathrm{~g})}$ was present.
(i) Complete the table below to show the amount of each component in the equilibrium mixture.

| component | $\mathrm{H}_{2}(\mathrm{~g})$ | $\mathrm{I}_{2}(\mathrm{~g})$ | $\mathrm{HI}(\mathrm{g})$ |
| :--- | :---: | :---: | :---: |
| initial amount / mol | 0.30 | 0.20 | 0 |
| equilibrium amount / mol |  |  |  |

Step 1: Write the Kc expression.
$\Rightarrow \mathrm{Kc}=[\mathrm{HI}]^{2}$
[H2] [I2]

Step 2: Work out the change between initial and equilibrium moles present of $\mathrm{H}_{2}$.
$\Rightarrow 0.3-0.14=0.16 \mathrm{~mol}$

Step 3: Calculate the equilibrium moles for the other reactants by subtracting the difference in moles that was calculated in step 1 from the initial moles of each reactant.
$\Rightarrow I_{2}: 0.2-0.16=0.04 \mathrm{~mol}$
Step 4: Calculate the equilibrium moles of the product by adding the difference in moles that was calculated in step 1 to the initial amount.
$\Rightarrow 0+0.16+0.16=0.32 \mathrm{~mol}$
[Two lots of 0.16 is added because from the balanced equation the ratio between the reactants and products is 1:2.]

## Try these questions ...

1. The preparation of hydrogen iodide, $\mathrm{HI}(\mathrm{g})$, from hydrogen and iodine gases is a reversible reaction which reaches equilibrium at constant temperature.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

(a) Write the expression for $K_{\mathrm{c}}$ for this equilibrium.
(b) A student mixed together $0.30 \mathrm{~mol} \mathrm{H}_{2}(\mathrm{~g})$ with $0.20 \mathrm{~mol}_{2}(\mathrm{~g})$ and the mixture was allowed to reach equilibrium. At equilibrium, $0.14 \mathrm{~mol}_{2}(\mathrm{~g})$ was present.
(i) Complete the table below to show the amount of each component in the equilibrium mixture.

| component | $\mathrm{H}_{2}(\mathrm{~g})$ | $\mathrm{I}_{2}(\mathrm{~g})$ | $\mathrm{HI}(\mathrm{g})$ |
| :--- | :---: | :---: | :---: |
| initial amount $/ \mathrm{mol}$ | 0.30 | 0.20 | 0 |
| equilibrium amount $/ \mathrm{mol}$ |  |  |  |

(ii) Calculate $K_{\mathrm{c}}$ to an appropriate number of significant figures. State the units, if any.
2.

A chemist investigates the equilibrium reaction between sulfur dioxide, oxygen, and sulfur trioxide, shown below.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

- The chemist mixes together $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ with a catalyst.
- The chemist compresses the gas mixture to a volume of $400 \mathrm{~cm}^{3}$.
- The mixture is heated to a constant temperature and is allowed to reach equilibrium without changing the total gas volume.

The equilibrium mixture contains $0.0540 \mathrm{~mol}_{\mathrm{SO}_{2}}$ and $0.0270 \mathrm{~mol} \mathrm{O}_{2}$.
At the temperature used, the numerical value for $K_{\mathrm{c}}$ is $3.045 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.
(i) Write the expression for $K_{\mathrm{c}}$ and the units of $K_{\mathrm{c}}$ for this equilibrium.
(ii) Determine the amount, in mol, of $\mathrm{SO}_{3}$ in the equilibrium mixture at this temperature.

Give your final answer to an appropriate number of significant figures.
Show all your working.

## Partial Pressure and Kp

The partial pressure of a gas is the contribution that each gas in a mixture makes towards the total pressure $P_{\text {tot }}$.

Consider mixtures of gas made up of gas $A$, gas $B$, gas $C$.

```
Mole fraction of A = number of moles of sample A
        total number of moles in gas mixture
```

$$
P_{\text {tot }}=p A+p B+p C
$$

To work out the partial pressure of a gas in a gas mixture you multiply the mole fraction of the gas by the total pressure.

Kp can only used for mixtures of gases.

## Example 1:

Write an expression for the equilibrium constant, Kp , for this reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Step 1: Form the expression with partial pressures of the products over the reactants.

$$
\Rightarrow K p=\frac{p\left(\mathrm{NH}_{3}\right)^{2}}{{ }_{\mathrm{p}}\left(\mathrm{~N}_{2}\right)_{\mathrm{p}}\left(\mathrm{H}_{2}\right)^{3}}
$$

## Example 2:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

A mixture at equilibrium contains $0.320 \mathrm{~mol} \mathrm{~N} 2,0.960 \mathrm{~mol} \mathrm{H} 2$ and 0.120 mol NH 3 . What is the mole fraction of H 2 in the equilibrium mixture?

Step 1: Sub in the values to find the molar fraction of A.
$\Rightarrow$ mole fraction of $A=$ number of moles of sample $A /$ total number of moles in mixture

```
# 0.96
```

$0.96+0.120+0.32$
$=0.686$

## Worked Exam Style Questions

## Question 1

Methanol, $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$, is manufactured from carbon monoxide and hydrogen in an equilibrium reaction.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta H=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

This equilibrium reaction is normally carried out at 10 MPa pressure and 550 K , and starting with a $1: 2 \mathrm{CO}: \mathrm{H}_{2}$ mixture. At equilibrium, only $10 \%$ of the CO has reacted.
(i) Deduce the equilibrium amounts, mole fractions and partial pressures of $\mathrm{CO}, \mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$ present at equilibrium. Write your answers in the table below.

Assume that you have started with a mixture of 1.0 mol CO and $2.0 \mathrm{~mol} \mathrm{H}_{2}$.

|  | CO | $\mathrm{H}_{2}$ | $\mathrm{CH}_{3} \mathrm{OH}$ |
| :--- | :---: | :---: | :---: |
| initial amount $/ \mathrm{mol}$ | 1.0 | 2.0 | 0.0 |
| equilibrium amount $/ \mathrm{mol}$ | 0.9 |  |  |
| mole fraction at <br> equilibrium |  |  |  |
| partial pressure at <br> equilibrium $/ \mathrm{MPa}$ |  |  |  |

Step 1: Work out the change between initial and equilibrium moles present of CO .
[this is because you have both data for this substance.]
$\Rightarrow 1-0.9=0.1$

Step 2: Work out the equilibrium amount of $\mathrm{H}_{2}$ and $\mathrm{CH}_{3} \mathrm{OH}$.
[To work out the equilibrium amount for a reactant subtract the change in moles from the initial amount.]
$\Rightarrow 2.0-0.1-0.1=1.8 \mathrm{~mol}$ of $\mathrm{H}_{2}$
[To work out the equilibrium amount of a product add the change in moles to the initial amount of that substance.]
$0+0.1=\underline{\mathbf{0}} \mathbf{1} \mathbf{~ m o l}$ of $\mathrm{CH}_{3} \mathrm{OH}$

Step 3: Work out mole fraction of each gas
$\Rightarrow$ Total number of moles in gas mixture $=2.8$ moles
$\mathrm{CO}=0.9 / 2.8=\underline{\mathbf{0 . 3 2 1}}$
$\mathrm{H} 2=1.8 / 2.8=\underline{\mathbf{0 . 6 4 3}}$
$\mathrm{CH} 3 \mathrm{OH}=0.1 / 2.8=\underline{\mathbf{0 . 0 3 6}}$

Step 4: To work out partial pressure of each gas multiply mole fraction by the total pressure given in the question
$\mathrm{CO}-0.321 \times 10=\underline{\mathbf{3} .21 \mathrm{MPa}}$
$\mathrm{H} 2-0.643 \mathrm{X} 10=6.43 \mathrm{MPa}$
$\mathrm{CH} 3 \mathrm{OH}-0.036 \times 10=\mathbf{0 . 3 6} \mathbf{~ M P a}$
(ii) Write the expression for $K_{p}$ for this equilibrium.
$\Rightarrow \mathrm{Kp}=\mathrm{p}(\mathrm{CH} 3 \mathrm{OH})$
$p(H 2)^{2} p(C O)$
(iv) In another experiment, the equilibrium partial pressures were:
$\mathrm{CO}, 3.70 \mathrm{MPa} ; \mathrm{H}_{2}, 5.10 \mathrm{MPa} ; \mathrm{CH}_{3} \mathrm{OH}, 0.261 \mathrm{MPa}$.
Calculate the value of $K_{p}$ for this equilibrium. Express your answer to an appropriate number of significant figures. State the units of $K_{p}$.

Step 1: Input the values into the Kp expression.
$K p=0.261$
$(5.10)^{2} \times(3.70)$
$=\underline{2.71 \times 10^{-3}}$

## Question 2

I When heated, chlorine gas, $\mathrm{Cl}_{2}$ dissociates into gaseous chlorine atoms.

$$
\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Cl}(\mathrm{~g})
$$

A chemist placed some chlorine gas in a container which was heated to 1400 K . The container was left until equilibrium had been reached.

Under these conditions, the equilibrium partial pressure of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 85.0 kPa and that of $\mathrm{Cl}(\mathrm{g})$ is 3.0 kPa .
(b) Determine the mole fraction of Cl in the equilibrium muxture.

Step 1: Find the total pressure in this gas mixture.
$\Rightarrow 85+3=88 \mathrm{kPa}$

Step 2: Work out the mole fraction of CI.
$\Rightarrow 3 / 88=\underline{\mathbf{0 . 0 3 4}}$
(c) (i) Write an expression for $K_{p}$ for this equilibrium.
$\Rightarrow \mathrm{Kp}=\mathrm{p}(\mathrm{Cl})^{2}$
p(Cl2)
(ii) Calculate $K_{p}$ for this equilibrium. State the units.
$\Rightarrow \mathrm{Kp}=3^{2}=\underline{\mathbf{0} .106}$

85

$\Rightarrow$ Units = $\underline{\mathbf{k P a}}$

## Try these questions...

3. 

Ethanoic acid can be manufactured by the following reaction, which is carried out between $150^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$.

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{~g})
$$

(a) A mixture of 50.0 mol of methanol and 50.0 mol of carbon monoxide reaches equilibrium at a pressure of 32.0 atm . At $175^{\circ} \mathrm{C}$, the equilibrium partial pressure of ethanoic acid is 22.2 atm .
(i) Write the expression for the equilibrium constant in terms of pressure, $K_{\mathrm{p}}$, for this reaction.
(ii) Calculate the partial pressures of methanol and carbon monoxide at equilibrium.
(iii) Calculate the value of $K_{\mathrm{p}}$ for this reaction at $175^{\circ} \mathrm{C}$. Include a unit in your answer and give your answer to three significant figures.
(b) Another sample of 50.0 mol of methanol and 50.0 mol of carbon monoxide was allowed to reach equilibrium at the same pressure of 32.0 atm , but at a lower temperature. $93.6 \%$ of the methanol was converted at equilibrium.
(i) Complete the table below to show the number of moles of each species in the equilibrium mixture.

|  | $\mathrm{CH}_{3} \mathrm{OH}$ | CO | $\mathrm{CH}_{3} \mathrm{COOH}$ |
| :--- | :---: | :---: | :---: |
| Number of moles at <br> start | 50.0 | 50.0 | 0 |
| Number of moles at <br> equilibrium |  |  |  |

(ii) Calculate the partial pressure of ethanoic acid in the equilibrium mixture.

## Answers

Q1.
(a) $\quad K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$ (1)
(b) (i) $\begin{array}{llll}\mathrm{H}_{2} & \mathrm{I}_{2} & \mathrm{HI} \\ & 0.30 & 0.20 & 0\end{array}$
$\begin{array}{lll}0.14 & 0.04 & 0.32\end{array}$
(1) (1)
(ii) $\quad K_{\mathrm{c}}=\frac{0.32^{2}}{0.14 \times 0.04}=18.28571429$ (1)
$=18$ (to 2 sig figs) (1)
no units (1)
(or ecf based on answers to (i) and/or (a))
Q2

$$
\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \checkmark
$$

Units: $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$
(ii) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 2.45, Award 4 marks.

Equilibrium concentrations (moles $\times \mathbf{2 . 5}$ ) 1 MARK
$\mathrm{SO}_{2}=0.135\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
AND $\mathrm{O}_{2}=0.0675\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$
Calculation of $\left[\mathrm{SO}_{3}(\mathrm{~g})\right]$
2 MARKS
$\left[\mathrm{SO}_{3}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{c}} \times\left[\mathrm{SO}_{2}\right]^{2} \times \mathrm{O}_{2}\right)$
OR $\sqrt{ }\left(\left(3.045 \times 10^{4}\right) \times 0.135^{2} \times 0.0675\right) \checkmark$
$=6.12039291\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$
Answer scores both $\left[\mathrm{SO}_{3}\right]$ marks automatically

Calculation of $n\left(\mathrm{SO}_{3}\right)$ in $400 \mathrm{~cm}^{3}$
1 MARK
$n\left(\mathrm{SO}_{3}\right)=6.12039291 / 2.5=2.45(\mathrm{~mol}) \checkmark$
3SF required (Appropriate number)
FULL ANNOTATIONS NEEDED
IF there is an alternative answer, check to see if there is any ECF credit possible using working below

ALLOW ECF from incorrect concentrations of $\mathrm{SO}_{2}$ and/or $\mathrm{O}_{2}$

ALLOW ECF from incorrect [ $\mathrm{SO}_{3}$ ]
ALLOW 3 SF, 6.12, up to calculator value of 6.12039291 correctly rounded.

Common errors
37.5

1 mark
No $\sqrt{ }$ for $\left[\mathrm{SO}_{3}\right]^{2}$ and no scaling by $1 / 2.5$
15.0

2 marks
No $\sqrt{ }$ for $\left[\mathrm{SO}_{3}\right]^{2}$
$0.619 \quad 3$ marks
Use of mol of $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$
1.55

2 marks
No conc used and Use of mol of $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$

Q3.
(a)(i)

$$
\left(K_{\mathrm{p}}=\right) \frac{\mathrm{pCH}_{3} \mathrm{CO}_{2} \mathrm{H}}{\mathrm{pCH}_{3} \mathrm{OH}(x) \mathrm{pCo}}
$$

Partial pressure symbol can be shown in various ways, eg pp, $p_{c o},(C O) p$, etc

ALLOW p in upper or lower case, round brackets
IGNORE units
(a)(ii)
$\mathrm{P} \mathrm{CH}_{3} \mathrm{OH}=4.9$ (atm) (1)
$\mathrm{PCO}=4.9$ (atm) (1)
1 mark for recognition that pressures are equal
IGNORE units

| [ ] | 1 |
| :--- | :--- |
| State symbols |  |
| given as (I) | 1 |
| +in bottom |  |
| line |  |
|  |  |

(a)(iii) $\quad K_{p}=\left((22.2) /(4.9)^{2}\right)$
$=0.925(1)$
$\mathrm{atm}^{-1}$ (1) stand alone mark but must match expression used in (a)(iii)

OR
$9.25 \times 10^{4} \mathrm{~Pa}^{-1} / 92.5 \mathrm{kPa}^{-1}(2)$
ALLOW TE from (a)(i) if inverted and/or (a)(ii)

Answers to
2 other than 3 significant figures
(b)(i)
$\mathrm{CH}_{3} \mathrm{OH}: 3.2$
CO : 3.2 (1) for both values
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}: 46.8$ (1)
ALLOW TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol $=50$
(b)(ii)

| $\left(\begin{array}{l}\left.\frac{46.8 \times 32}{53.2}\right)=28.2 / 28.1504(\mathrm{~atm}) \\ \text { IGNORE sf except } 1\end{array}\right.$ | 28.1 |
| :--- | :--- | :--- |
| Value $=28.16$ if mol fraction rounded | $\frac{46.8 \times 32}{50}=$ |
| ALLOW TE from (b)(i) | $29.95(\mathrm{~atm})$ |

