

OCR A Chemistry A-Level

Module 5 - Physical Chemistry & Transition Elements

<u>Equilibria</u>

Notes and Example Calculations

Answers given at the end of the booklet

🕟 www.pmt.education

▶ Image: Contraction PMTEducation

The Equilibrium Constant, Kc

Le Chatelier Principle

If a closed system under equilibrium is subjected to a change, the system will move to minimise the effect of the change. These changes can be either temperature, pressure or concentration.

The equilibrium constant shows where the equilibrium lies for a general reaction:

aA + bB ≑ pP + qQ

The equilibrium constant expression is:

Example 1: Write the equilibrium constant expression for this reaction and include the units:

 N_2 + $3H_2 \rightarrow 2NH_3$

Step 1: Write an expression for Kc. [Remember it is always products over reactants.]

 \Rightarrow Kc = [NH3]²

[N2] [H2]³

Step 2: Find the units for Kc.

Mol dm⁻³ x Mol dm⁻³

Møl dm-3 x Mol dm-3 x Mol dm-3 x Mol dm-3

⇒ Units: <u>mol⁻²dm</u>⁶

Example 2:

For the equilibrium:

 $PCl_{_{5}}(g) \rightarrow PCl_{_{3}}(g) + Cl_{_{2}}(g)$

the equilibrium concentrations of PCI_5 , PCI_3 and CI_2 are 1.0, 0.205 and 0.205 mol dm⁻³ respectively. Calculate the value of K_c.

Step 1: Write an equilibrium constant expression for this reaction.

⇒ Kc = [Cl2] [PCl3]

 $[PCl_5]$

Step 2: Input the values with the corresponding molecules into the expression.

⇒ Kc = (0.205) x (0.205)

1

= <u>0.042</u> moldm⁻³

Worked Exam Style Questions

Question 1

Syngas is a mixture of carbon monoxide and hydrogen gases, used as a feedstock for the manufacture of methanol.

A dynamic equilibrium was set up between carbon monoxide, CO, hydrogen, H_2 , and methanol, CH₃OH, in a 2.0 dm³ sealed vessel.

The equilibrium is shown below.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$

The number of moles of each component at equilibrium is shown below

component	CO(g)	H ₂ (g)	CH ₃ OH(g)
number of moles at equilibrium	6.20 × 10 ⁻³	4.80 × 10 ⁻²	5.20 × 10 ⁻⁵

(i) Write an expression for K_c for this equilibrium system.

= <u>14.56</u>

Step 4: Work out the units

Mol dm⁻³

Mol dm-3 x Mol dm-3 x Mol dm-3

⇒ <u>mol⁻²dm</u>⁶

▶ Image: Second Second

Question 2

Nitrogen gas and hydrogen gas produce ammonia gas as shown below.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H = -92 \text{ kJ mol}^{-1}$

(i) Write the expression for K_c for this equilibrium.

At 500 °C, K_c = 8.00 x 10⁻² dm⁶ mol⁻².

At equilibrium, the concentration of N₂ is 1.20moldm⁻³ and the concentration of H₂ is 2.00moldm⁻³.

Calculate the equilibrium concentration of ammonia under these conditions.

equilibrium concentration of NH₃ = moldm⁻³

[3]

Step 1: Write the Kc expression.

 \Rightarrow Kc = [NH3]²

[N2] [H2]³

Step 2: Rearrange the expression so that ammonia is the subject.

 \Rightarrow [NH3]² = Kc x [N2] x [H2]³

Step 3: Input values into the expression.

⇒
$$[NH3]^2 = 8 \times 10^{-2} \times 1.2 \times 2^3$$

= 0.768
 $[NH3] = \sqrt{0.78}$
= 0.88 moldm⁻³

🕟 www.pmt.education

▶ Image: PMTEducation

Question 3

The preparation of hydrogen iodide, HI(g), from hydrogen and iodine gases is a reversible reaction which reaches equilibrium at constant temperature.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

- (a) Write the expression for K_c for this equilibrium.
- (b) A student mixed together 0.30 mol H₂(g) with 0.20 mol I₂(g) and the mixture was allowed to reach equilibrium. At equilibrium, 0.14 mol H₂(g) was present.
 - (i) Complete the table below to show the amount of each component in the equilibrium mixture.

component	H ₂ (g)	I ₂ (g)	HI(g)
initial amount / mol	0.30	0.20	0
equilibrium amount / mol			

[2]

Step 1: Write the Kc expression.

 \Rightarrow Kc = [HI]²

[H2] [I2]

Step 2: Work out the change between initial and equilibrium moles present of H₂.

⇒ 0.3 - 0.14 = 0.16 mol

Step 3: Calculate the equilibrium moles for the other reactants by subtracting the difference in moles that was calculated in step 1 from the initial moles of each reactant.

 \Rightarrow I₂: 0.2 - 0.16 = 0.04 mol

Step 4: Calculate the equilibrium moles of the product by adding the difference in moles that was calculated in step 1 to the initial amount.

⇒ 0 + 0.16 + 0.16 = 0.32 mol

[Two lots of 0.16 is added because from the balanced equation the ratio between the reactants and products is 1:2.]

www.pmt.education

Try these questions ...

1. The preparation of hydrogen iodide, HI(g), from hydrogen and iodine gases is a reversible reaction which reaches equilibrium at constant temperature.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

[1 mark]

- (a) Write the expression for K_c for this equilibrium.
- (b) A student mixed together 0.30 mol H₂(g) with 0.20 mol I₂(g) and the mixture was allowed to reach equilibrium. At equilibrium, 0.14 mol H₂(g) was present.
 - (i) Complete the table below to show the amount of each component in the equilibrium mixture.

component	H ₂ (g)	I ₂ (g)	HI(g)
initial amount / mol	0.30	0.20	0
equilibrium amount / mol			

Calculate K_c to an appropriate number of significant figures. State the units, if any.

2.

A chemist investigates the equilibrium reaction between sulfur dioxide, oxygen, and sulfur trioxide, shown below.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

- The chemist mixes together SO₂ and O₂ with a catalyst.
- The chemist compresses the gas mixture to a volume of 400 cm³.
- The mixture is heated to a constant temperature and is allowed to reach equilibrium without changing the total gas volume.

The equilibrium mixture contains 0.0540 mol SO₂ and 0.0270 mol O₂.

At the temperature used, the numerical value for K_c is 3.045×10^4 dm³ mol⁻¹.

- (i) Write the expression for K_c and the units of K_c for this equilibrium.
- (ii) Determine the amount, in mol, of SO₃ in the equilibrium mixture at this temperature.

Give your final answer to an **appropriate** number of significant figures.

Show all your working.

[4 marks]

[2 marks]

[2]

[3 marks]

▶ Image: PMTEducation

Partial Pressure and Kp

The partial pressure of a gas is the contribution that each gas in a mixture makes towards the total pressure P_{tot} .

Consider mixtures of gas made up of gas A, gas B, gas C.

Mole fraction of A = number of moles of sample A total number of moles in gas mixture

$$P_{tot} = pA + pB + pC$$

To work out the partial pressure of a gas in a gas mixture you multiply the mole fraction of the gas by the total pressure.

Kp can only used for mixtures of gases.

Example 1: Write an expression for the equilibrium constant, Kp, for this reaction: $N_2(g) + 3H_2(g) \approx 2NH_3(g)$

Step 1: Form the expression with partial pressures of the products over the reactants.

 \Rightarrow Kp = p(NH₃)²

 $_{P}(N_{2})_{P}(H_{2})^{3}$

Example 2:

 $N_2(g) + 3H_2(g) = 2NH_3(g)$

A mixture at equilibrium contains 0.320 mol N2, 0.960 mol H2 and 0.120 mol NH3. What is the mole fraction of H2 in the equilibrium mixture?

Step 1: Sub in the values to find the molar fraction of A.

⇒ mole fraction of A = number of moles of sample A / total number of moles in mixture

⇒ 0.96

0.96 + 0.120 + 0.32

= <u>0.686</u>

Worked Exam Style Questions

Question 1

Methanol, $CH_3OH(g)$, is manufactured from carbon monoxide and hydrogen in an equilibrium reaction.

 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$

This equilibrium reaction is normally carried out at 10MPa pressure and 550 K, and starting with a 1 : 2 CO : H_2 mixture. At equilibrium, only 10% of the CO has reacted.

(i) Deduce the equilibrium amounts, mole fractions and partial pressures of CO, H₂ and CH₃OH present at equilibrium. Write your answers in the table below.

Assume that you have started with a mixture of 1.0 mol CO and 2.0 mol H₂.

	CO	H ₂	CH ₃ OH
initial amount /mol	1.0	2.0	0.0
equilibrium amount /mol	0.9		
mole fraction at equilibrium			
partial pressure at equilibrium /MPa			

[4]

Step 1: Work out the change between initial and equilibrium moles present of CO.

[this is because you have both data for this substance.]

⇒ 1 - 0.9 = 0.1

Step 2: Work out the equilibrium amount of H_2 and CH_3OH .

[To work out the equilibrium amount for a reactant subtract the change in moles from the initial amount.]

⇒ 2.0 - 0.1 - 0.1 = <u>1.8</u> mol of H₂

[To work out the equilibrium amount of a product add the change in moles to the initial amount of that substance.]

0 + 0.1 = <u>0.1</u> mol of CH₃OH

Step 3: Work out mole fraction of each gas

⇒ Total number of moles in gas mixture = 2.8 moles

CO = 0.9 / 2.8 = <u>0.321</u> H2 = 1.8 / 2.8 = <u>0.643</u> CH3OH = 0.1 / 2.8 = <u>0.036</u>

Step 4: To work out partial pressure of each gas multiply mole fraction by the total pressure given in the question

CO - 0.321 X 10 = <u>3.21 MPa</u> H2 - 0.643 X 10 = <u>6.43 MPa</u> CH3OH - 0.036 X 10 = <u>0.36 MPa</u>

(ii) Write the expression for K_p for this equilibrium.

⇒ Kp = p(CH3OH)

p(H2)²p(CO)

(iv) In another experiment, the equilibrium partial pressures were:

CO, 3.70 MPa; H₂, 5.10 MPa; CH₃OH, 0.261 MPa.

Calculate the value of K_p for this equilibrium. Express your answer to an appropriate number of significant figures. State the units of K_p .

Step 1: Input the values into the Kp expression.

Kp = 0.261

(5.10)² x (3.70)

= <u>2.71 x 10</u>⁻³

Question 2

When heated, chlorine gas, Cl₂ dissociates into gaseous chlorine atoms.

 $CL_2(g) \rightleftharpoons 2Cl(g)$

A chemist placed some chlorine gas in a container which was heated to 1400 K. The container was left until equilibrium had been reached.

Under these conditions, the equilibrium partial pressure of Cl₂(g) is 85.0 kPa and that of Cl(g) is 3.0 kPa.

(b) Determine the mole fraction of CI in the equilibrium mixture.

Step 1: Find the total pressure in this gas mixture.

⇒ 85 + 3 = 88 kPa

Step 2: Work out the mole fraction of CI.

⇒ 3 / 88 = <u>0.034</u>

(c) (i) Write an expression for K_p for this equilibrium.

 \Rightarrow Kp = p(Cl)²

p(Cl2)

Calculate K_p for this equilibrium. State the units.

⇒ Kp = 3² = <u>0.106</u>

D O

⇒ Units = <u>kPa</u>

Try these questions...

3.

Ethanoic acid can be manufactured by the following reaction, which is carried out between 150 °C and 200 °C.

$$CH_3OH(g) + CO(g) \implies CH_3COOH(g)$$

- (a) A mixture of 50.0 mol of methanol and 50.0 mol of carbon monoxide reaches equilibrium at a pressure of 32.0 atm. At 175 °C, the equilibrium partial pressure of ethanoic acid is 22.2 atm.
 - Write the expression for the equilibrium constant in terms of pressure, K_p, for this reaction.

(1)

(ii) Calculate the partial pressures of methanol and carbon monoxide at equilibrium.

(2)

(iii) Calculate the value of K_p for this reaction at 175 °C. Include a unit in your answer and give your answer to **three** significant figures.

(2)

DOG PMTEducation

- (b) Another sample of 50.0 mol of methanol and 50.0 mol of carbon monoxide was allowed to reach equilibrium at the same pressure of 32.0 atm, but at a lower temperature. 93.6 % of the methanol was converted at equilibrium.
 - (i) Complete the table below to show the number of moles of each species in the equilibrium mixture.

(2)

	CH ₃ OH	CO	CH ₃ COOH
Number of moles at start	50.0	50.0	0
Number of moles at equilibrium			

(ii) Calculate the partial pressure of ethanoic acid in the equilibrium mixture.

(1)

C

▶ Image: PMTEducation

<u>Answers</u>

Q1.

(a) $K_{\rm c} = \frac{[{\rm HI}]^2}{[{\rm H}_2][{\rm I}_2]}$ (1)

(b)	(i)	H ₂	I ₂	HI
		0.30	0.20	0
		0.14	0.04	0.32
			(1)	(1)

(ii)
$$K_{c} = \frac{0.32^{2}}{0.14 \times 0.04} = 18.28571429$$
 (1)
= 18 (to 2 sig figs) (1)
no units (1)
(or ecf based on answers to (i) and/or (a))

3

1

2

Q2

(i)

 $(K_{c} =) \frac{[SO_{3}]^{2}}{[SO_{2}]^{2} [O_{2}]} \checkmark$ Units: dm³ mol⁻¹ \checkmark

🕟 www.pmt.education

0

O

▶ Image: Second Second

FIRST, CHECK THE ANSWER ON ANSWE IF answer = 2.45, Award 4 marks.	RLINE	IF there is an al	TIONS NEEDED ternative answer, check to
Equilibrium concentrations (moles × 2.5) $SO_2 = 0.135 \text{ (mol dm}^{-3}\text{)}$ AND $O_2 = 0.0675 \text{ (mol dm}^{-3}\text{)} \checkmark$	1 MARK	working below	ny ECF credit possible using
Calculation of [SO ₃ (g)] [SO ₃] = $\sqrt{(K_o \times [SO_2]^2 \times O_2)}$ OR $\sqrt{(3.045 \times 10^4) \times 0.135^2 \times 0.0675)}$	2 MARKS	SO ₂ and/or O ₂	om incorrect concentrations of om incorrect [SO ₃]
= 6.12039291 (mol dm ⁻³) \checkmark Answer scores both [SO ₃] marks auton			6.12, up to calculator value of rectly rounded.
Calculation of <i>n</i> (SO ₃) in 400 cm ³	1 MARK	37.5 No √for [SO ₃] ²	1 mark and no scaling by 1/2.5
n(SO ₃) = 6.12039291/2.5 = 2.45 (mol) - 3SF required (Appropriate number)	4	15.0 No √for [SO ₃] ²	2 marks
		0.619 Use of mol of S	O_2 and O_2
		1.55 No conc used a	2 marks nd Use of mol of SO ₂ and O ₂

Q3.

			-
(a)(i)	(K _p =) <u>pCH₃CO₂H</u> pCH ₃ OH (x) pCO Partial pressure symbol can be shown in various ways, eg pp, p _{CO} , (CO)p, etc	[] State symbols given as (I) + in bottom line	1
	ALLOW p in upper or lower case, round brackets IGNORE units		
(a)(ii)	P CH₃OH = 4.9 (atm) (1) P CO = 4.9 (atm) (1)		2
	1 mark for recognition that pressures are equal		
	IGNORE units		

<u>_</u>

www.pmt.education 🖸 💿 🕜 MTEducation

	-resources-tuition-courses		
(a)(iii)	$K_p = ((22.2)/(4.9)^2)$ = 0.925 (1) atm ⁻¹ (1) stand alone mark but must match expression used in (a)(iii) OR 9.25 x 10 ⁴ Pa ⁻¹ / 92.5 kPa ⁻¹ (2) ALLOW TE from (a)(i) if inverted and/or (a)(ii	Answers to other than significant figures	
(b)(i)	CH ₃ OH: 3.2 CO : 3.2 (1) for both values CH ₃ CO ₂ H: 46.8 (1) <i>ALLOW</i> TE for moles of ethanoic acid based on numbers of methanol and carbon monoxide used, as long as moles of methanol and carbon monoxide are equal and moles ethanoic acid + moles methanol = 50		2
(b)(ii)	$\frac{46.8 \times 32}{53.2}$ = 28.2 / 28.1504 (atm) <i>IGNORE</i> sf except 1 Value = 28.16 if mol fraction rounded <i>ALLOW</i> TE from (b)(i)	28.1 <u>46.8 x 32</u> = <u>50</u> 29.95 (atm)	1

🕟 www.pmt.education

<u>_</u>

DOG PMTEducation